ALGEBRAIC EXPRESSION
Definition with examples
Expansion of algebraic expression
Factorization of simple algebraic expressions
Definition with examples
In algebra, letters stand for numbers. The numbers can be whole or fractional, positive or negative.
Example
Simplify the following
- -5 x 2y
- -3a x -6b
- -14a/7
- -1/3 of 36x2
Solution
1) -5 x 2y = -5 x (+2) x y
= -(5 x 2) x y = -10y
2) -3a x -6b = (-3) x a (-6) x b
= (-3) x (-6) x a x b = 18ab
- -14a/7 = (-14) x a = (-14/7) x a
+7
= -2 x a = -2a
4) -1/3 of 36x2 = (+36) x x2 = – (36/3) x x2
(-3)
= -12x2
Evaluation
Simplify the following
1.-16x/8
- (-1/10) of 100z
- (-2x) x (-9y)
Removing brackets
Example
Remove brackets from the following
a.8 (2c + 3d) (b) 4y (3x-5) (c) (7a-2b) 3a
Solution
8(2c+3d) = 8 x 2c + 8 x 3d
= 16c + 24d
b.4y(3x-5) = 4y x 3x 4y x 5
= 12xy 20y
c.(7a-2b)3a = 7a x 3a 2b x 3a
=21a2 6ab
Evaluation
Remove brackets from the following
1.-5x(11x 2y)
2.-p(p 5q)
3.(2c + 8d)(-2)
Expanding algebraic expressions
The expression (a+b)(b-5) means (a+2) x (b-5)
The terms in the first bracket, (a+2), multiply each term in the second bracket, b-5.
Example
Expand the following
-
- (a+b) (c+d)
- (6-x) (3+y)
- (2p-3q) (5p-4)
Solution
a.(a+b)(c+d) = c(a+b) + d(a+b)
= ac+bc+ad+bd
b.(6-x)(3+y) = 3(6-x) + y (6-x)
= 18 -3x +6y xy
c.(2p-3q)(5p-4) = 5p(2p 3q)-4(2p-3q)
= 10p2 15pq 8p + 12q
Evaluation
Expand the following
- (3+d)(2+d) (b) (3x+4)(x-2) (c) (2h-k)(3h+2k) (d) (7m-5n)(5m+3n)
Factorization of algebraic expression
Example:
Factorize the following
- 12y + 8z (b) 4n2 2n (c) 24pq 16p2
Solution
- 12y +8z
The HCF of 12y and 8z is 4
12y +8z = 4(12y/4 + 8z/4)
= 4(3y + 2z)
- 4n2 2n
The HCF of 4n2 and 2n is 2n
4n2 2n = 2n(4n2/2n 2n/2n)
= 2n (2n-1)
- 24pq 16p2
The HCF of 24pq and 16p2 is 8p
24pq 16p2 = 8p(24pq/8p – 16p2/8p)
= 8p(3q 2p)
Evaluation
Factorize the following:
- 2abx + 7acx (b) 3d2e + 5d2
- 12ax + 8bx
WEEKEND ASSIGNMENT
- Simplify (-6x) x (-x) =_____ a) 6x ( b) 6x2 (c) -6x (d) -6x2
- Remove brackets from -3(12a 5) a) 15-36a b) 15a-36 c) 15a + 36 d) 36a 15
- Expand (a+3)(a+4) (a) a2+7a+12 (b) a2+12a+7 (c) a2+12a-7 (d) a2+7a-12
- Factorize abc + abd (a) ab(c+d) (b) ac(b+d) (c) ad(b+c) (d)abc(c+d)
- Factorize 5a2 + 2ax (a) a(5a+2x) (b) 5(2a2+2x) (c) a(5x+2ax) (d)a2(5+2x)
THEORY
Expand the following:
- (p+2q)(p+3q)
- (5r+2s)(3r+4s)
Factorize the following
- -18fg 12g
- -5xy + 10y
See also
APPROXIMATION OF NUMBERS ROUNDING
H.C.F & L.C.M AND PERFECT SQUARES